This study aimed to identify abnormal brain regions and imaging indices of vascular cognitive impairment (VCI) and explore specific imaging diagnostic markers of VCI. In this study, 24 patients with VCI were allocated to the VCI group and 25 healthy subjects were assigned to the healthy control (HC) group. Demographic data and neuropsychological test scores were compared using SPSS 25.0. The structural and functional imaging data were post-processed and statistically analyzed using CAT12, DPARSF and SPM12 software, based on the MATLAB platform. The structural and functional indices of gray matter volume (GMV) and regional homogeneity (ReHo) were obtained, and inter-group data were analyzed using an independent-sample
t
test. Sex, age, years of education, and total brain volume were used as covariates. Compared to the HC group, the GMV of VCI in the VCI group decreased significantly in the rectus muscles of the bilateral gyrus, left superior temporal gyrus, left supplementary motor area (SMA), right insula, right superior temporal gyrus, right anterior cuneiform lobe, and right anterior central gyrus (PRECG) (
P
< .05, FWE correction), without GMV enlargement in the brain area. ReHo decreased in the right inferior temporal gyrus (ITG), right parahippocampal gyrus, and left temporal pole (middle temporal gyrus, right lingual gyrus, left posterior central gyrus, and right middle temporal gyrus), the areas of increased ReHo were the left caudate nucleus, left rectus gyrus, right anterior cingulate gyrus and lateral cingulate gyrus (
P
< .05, FWE correction). Correlation analysis showed that the GMV of the left superior temporal gyrus was positively correlated with the Montreal Cognitive Assessment (MoCA) score (
P
< .05), and the GMV of the right insula was positively correlated with the MESE and long delayed memory scores (
P
< .05). There was a significant positive correlation between the ReHo and short-term delayed memory scores in the middle temporal gyrus of the left temporal pole (
P
< .05). The volume of GMV and ReHo decreased in VCI patients, suggesting that impairment of brain structure and function in specific regions is the central mechanism of cognitive impairment in these patients. Meanwhile, the functional indices of some brain regions were increased, which may be a compensatory mechanism for the cognitive impairment associated with VCI.