Uncertainty propagation plays a pivotal role in structural reliability assessment. This paper introduces a novel uncertainty propagation method for structural reliability under different knowledge stages based on probability theory, uncertainty theory and chance theory. Firstly, a surrogate model combining the uniform design and least-squares method is presented to simulate the implicit limit state function with random and uncertain variables. Then, a novel quantification method based on chance theory is derived herein, to calculate the structural reliability under mixed aleatory and epistemic uncertainties. The concepts of chance reliability and chance reliability index (CRI) are defined to show the reliable degree of structure. Besides, the selection principles of uncertainty propagation types and the corresponding reliability estimation methods are given according to the different knowledge stages. The proposed methods are finally applied in a practical structural reliability problem, which illustrates the effectiveness and advantages of the techniques presented in this work.