2013
DOI: 10.1109/tii.2012.2222422
|View full text |Cite
|
Sign up to set email alerts
|

Research on Anti-Error Performance of Speed and Flux Estimator for Induction Motor Using Robust Reduced-Order EKF

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
4

Year Published

2016
2016
2021
2021

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 36 publications
(12 citation statements)
references
References 34 publications
0
8
0
4
Order By: Relevance
“…The covariance matrix Q represents the noises on the system due to the modeling errors. From (17) and (18), the matrix K is proportional to the matrix Q. Then, it has the opposite effect of that of R. Under the premise to ensure convergence, the choice of every values for these matrices is done according to the dynamics of the state variables and the performance index.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The covariance matrix Q represents the noises on the system due to the modeling errors. From (17) and (18), the matrix K is proportional to the matrix Q. Then, it has the opposite effect of that of R. Under the premise to ensure convergence, the choice of every values for these matrices is done according to the dynamics of the state variables and the performance index.…”
Section: Resultsmentioning
confidence: 99%
“…Because of the massive calculation with a five-order matrix, most of the research results are only verified by simulations. In order to apply it to practice, a reduced-order EKF algorithm for flux and speed estimation is proposed in [17] and [18], and the speed and flux linkage are estimated easily. In [19], an EKF has been used to estimate the rotor speed, rotor flux, stator flux and stator currents accurately in the vector control systems of the induction motors, and a small stator current THD is confirmed.…”
Section: Introductionmentioning
confidence: 99%
“…But there is unstable area for motor parameters estimation at low speed range. In literature [34], the robust Kalman filter and adaptive speed estimation are proposed. Although the sensitivity to external and internal interrupt is decreased at middle and high speed range, the performance at low speed range is not well.…”
Section: Design Methods Of Adaptive Full Order Observer With or Withoumentioning
confidence: 99%
“…So (34) can be satisfied as long as g 2 is negative. However this feedback gains only can be applied in fundamental speed range (within ±50Hz).…”
Section: B Robust Speed Estimation With Corresponding Robust Feedbacmentioning
confidence: 99%
“…A maioria dos estimadores de velocidade tem origem no modelo matemático do motor de indução, onde é necessário o conhecimento preciso dos parâmetros do motor (VASIC; VU-KOSAVIC; LEVI, 2003; AMEZQUITA-BROOKS; LICEAGA-CASTRO; LICEAGA-CASTRO, 2014a; KAN; ZHANG; WANG, 2015; SMITH; GADOUE; FINCH, 2016). Muitas estratégias para a estimação de velocidade têm sido propostas; tais como o uso do Sistema Modelo de Referência Adaptativo (SMRA) (YANG et al, 2016; ORLOWSKA-KOWALSKA; DYBKOWSKI, 2010), injeção de sinais de alta frequência (CARUANA; ASHER; SUMNER, 2005), Observador de Modos Deslizantes (OMD) (ZHANG, 2013), Filtro Extendido de Kalman (FEK) (YIN et al, 2013;ANDRIAMALALA et al, 2011) Em Yang et al (2016) é apresentado o uso de um OMD aplicado para estimar a velocidade de um MI, onde é observada a sensibilidade do sistema frente a precisão paramétrica. O trabalho de Orlowska-Kowalska e Dybkowski (2010) desenvolveu um novo tipo de SMRA para estimar a velocidade do rotor com controle vetorial do MI.…”
Section: Introductionunclassified