There is a growing interest towards multi-body modelling and simulation that play a critical role in the development and testing of new mechanical systems, in general, and formula cars specifically to avoid expensive and time-consuming experimental track testing. Recent advances in computer-aided engineering packages, allows one not only to evaluate the basic properties that define the dynamic behavior of a newly-designed formula car, but as well as to investigate the impact on the performance of the many adjustable parameters that collectively are referred to as the car set-up. Therefore, by providing a rapid feedback of a given set-up expectation, optimal configurations can be obtained ensuring the highest level of performance. In this paper, a Formula SAE vehicle is expressly targeted. First, a full multi-body model of the prototype is described detailing the properties of each subassembly, e.g., suspensions and antiroll bars, steering system, and powertrain. Then, the basic handling characteristics are obtained via simulated track testing. Based on vehicle dynamics principles, the fine tuning of the vehicle setup is thoroughly discussed to gain the best performance in each of the contest events of the Formula SAE competition. For example, in the skidpad event where cars are required to drive along an eight-shaped track, an almost 2 km/h gain in the maximum travel velocity can be achieved by adjusting the camber angles of all tires.