Rock burst, an important kind of geological disaster, often occurs in underground construction. Rock burst risk assessment, as an important part of engineering risk assessment, cannot be ignored. Liquid nitrogen fracturing is a new technology used in the geological, oil, and gas industries to enhance productivity. It involves injecting liquid nitrogen into reservoir rocks to induce fractures and increase permeability, effectively reducing rock burst occurrences and facilitating the flow of oil or gas toward the wellbore. The research on rock burst risk assessment technology is the basis of reducing rock burst geological disasters, which has important theoretical and practical significance. This article examines the temperature treatment of two types of rocks at 25 °C, 100 °C, 200 °C, 300 °C, and 400 °C, followed by immersion in a liquid nitrogen tank. The temperature difference between the liquid nitrogen and the rocks may trigger rock bursting. The research focused on analyzing various characteristics of rock samples when exposed to liquid nitrogen. This included studying the stress–strain curve, elastic modulus, strength, cross-section analysis, wave velocity, and other relevant aspects. Under the influence of high temperature and a liquid nitrogen jet, the wave velocity of rocks often changes. The structural characteristics and possible hidden dangers of rocks can be understood more comprehensively through section scanning analysis. The stress–strain curve describes the deformation and failure behavior of rocks under different stress levels, which can help to evaluate their stability and structural performance. The investigation specifically focused on the behavior of rocks subjected to high temperatures and liquid nitrogen. By analyzing the stress–strain curves, researchers were able to identify the precursors and deformation processes that occur before significant deformation or failure. These findings have implications for the mechanical properties and stability of the rocks.