Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The gas content and permeability of coal reservoirs are the main factors affecting the productivity of coalbed methane. To explore the law of gas content and permeability of coal reservoirs in the Zhijin area of Guizhou, taking No.16, No.27 and No.30 coal seams in Wenjiaba mining area of Guizhou as the engineering background, based on the relevant data of coalbed methane exploration in Wenjiaba block, the geological structure, coal seam thickness, coal quality characteristics,coal seam gas content and permeability of the area were studied utilizing geological exploration, analysis of coal components and methane adsorption test. The results show that the average thickness of coal seams in this area is between 1.32 and 1.85 m; the average buried depth of the coal seam is in the range of 301.3–384.2 m; the gas content of No.16 and No.27 coal seams is higher in the syncline core. The gas content of the No.30 coal seam forms a gas-rich center in the south of the mining area. The buried depth and gas content of coal seams in the study area show a strong positive correlation. Under the same pressure conditions, the adsorption capacity of dry ash-free basis is significantly higher than that of air-dried coal. The permeability decreases exponentially with the horizontal maximum principal stress and the horizontal minimum principal stress. The horizontal maximum primary stress and the flat minimum prominent stress increase with the increase of the buried depth of the coal seam. The permeability and coal seam burial depth decrease exponentially. This work can provide engineering reference and theoretical support for selecting high-yield target areas for CBM enrichment in the block.
The gas content and permeability of coal reservoirs are the main factors affecting the productivity of coalbed methane. To explore the law of gas content and permeability of coal reservoirs in the Zhijin area of Guizhou, taking No.16, No.27 and No.30 coal seams in Wenjiaba mining area of Guizhou as the engineering background, based on the relevant data of coalbed methane exploration in Wenjiaba block, the geological structure, coal seam thickness, coal quality characteristics,coal seam gas content and permeability of the area were studied utilizing geological exploration, analysis of coal components and methane adsorption test. The results show that the average thickness of coal seams in this area is between 1.32 and 1.85 m; the average buried depth of the coal seam is in the range of 301.3–384.2 m; the gas content of No.16 and No.27 coal seams is higher in the syncline core. The gas content of the No.30 coal seam forms a gas-rich center in the south of the mining area. The buried depth and gas content of coal seams in the study area show a strong positive correlation. Under the same pressure conditions, the adsorption capacity of dry ash-free basis is significantly higher than that of air-dried coal. The permeability decreases exponentially with the horizontal maximum principal stress and the horizontal minimum principal stress. The horizontal maximum primary stress and the flat minimum prominent stress increase with the increase of the buried depth of the coal seam. The permeability and coal seam burial depth decrease exponentially. This work can provide engineering reference and theoretical support for selecting high-yield target areas for CBM enrichment in the block.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.