In this paper, the relationship between the terahertz radiation and the spatial distribution of photogenerated carriers under different bias electric field is studied. Terahertz pulses and the photocurrent of SI-GaAs photoconductive antenna are measured by the terahertz time-domain spectroscopy system. The occupancy rate for photogenerated carriers for different energy valleys is obtained by comparing the photocurrent of terahertz field integrating with respect to time with the photocurrent measured by oscilloscope. Results indicate that 93.04% of all photogenerated carriers are located in the Γ valley when the bias electric field is 3.33 kV/cm, and 68.6% of all photogenerated carriers are transferred to the satellite valley when the bias electric field is 20.00 kV/cm. With the bias electric field increasing, the carrier occupancy rate for the satellite valley tends to saturate at 72.16%. In order to obtain the carrier occupancy rate for the satellite valley and saturate value at the high bias electric field, an ensemble Monte Carlo simulation based on the theory of photo-activated charge domain is developed.