Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recent increases in global food demand have made this research and, therefore, the prediction of agricultural commodity prices, almost imperative. The aim of this paper is to build efficient artificial intelligence methods to effectively forecast commodity prices in light of these global events. Using three separate, well-structured models, the commodity prices of eleven major agricultural commodities that have recently caused crises around the world have been predicted. In achieving its objective, this paper proposes a novel forecasting model for agricultural commodity prices using the extreme learning machine technique optimized with the genetic algorithm. In predicting the eleven commodities, the proposed model, the extreme learning machine with the genetic algorithm, outperforms the model formed by the combination of long short-term memory with the genetic algorithm and the autoregressive integrated moving average model. Despite the fluctuations and changes in agricultural commodity prices in 2022, the extreme learning machine with the genetic algorithm model described in this study successfully predicts both qualitative and quantitative behavior in such a large number of commodities and over such a long period of time for the first time. It is expected that these predictions will provide benefits for the effective management, direction and, if necessary, restructuring of agricultural policies by providing food requirements that adapt to the dynamic structure of the countries.
Recent increases in global food demand have made this research and, therefore, the prediction of agricultural commodity prices, almost imperative. The aim of this paper is to build efficient artificial intelligence methods to effectively forecast commodity prices in light of these global events. Using three separate, well-structured models, the commodity prices of eleven major agricultural commodities that have recently caused crises around the world have been predicted. In achieving its objective, this paper proposes a novel forecasting model for agricultural commodity prices using the extreme learning machine technique optimized with the genetic algorithm. In predicting the eleven commodities, the proposed model, the extreme learning machine with the genetic algorithm, outperforms the model formed by the combination of long short-term memory with the genetic algorithm and the autoregressive integrated moving average model. Despite the fluctuations and changes in agricultural commodity prices in 2022, the extreme learning machine with the genetic algorithm model described in this study successfully predicts both qualitative and quantitative behavior in such a large number of commodities and over such a long period of time for the first time. It is expected that these predictions will provide benefits for the effective management, direction and, if necessary, restructuring of agricultural policies by providing food requirements that adapt to the dynamic structure of the countries.
Atmospheric visibility is a crucial meteorological element impacting urban air pollution monitoring, public transportation, and military security. Traditional visibility detection methods, primarily manual and instrumental, have been costly and imprecise. With advancements in data science and computing, deep learning-based visibility detection technologies have rapidly emerged as a research hotspot in atmospheric science. This paper systematically reviews the applications of various deep learning models—Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and Transformer networks—in visibility estimation, prediction, and enhancement. Each model’s characteristics and application methods are discussed, highlighting the efficiency of CNNs in spatial feature extraction, RNNs in temporal tracking, GANs in image restoration, and Transformers in capturing long-range dependencies. Furthermore, the paper addresses critical challenges in the field, including dataset quality, algorithm optimization, and practical application barriers, proposing future research directions, such as the development of large-scale, accurately labeled datasets, innovative learning strategies, and enhanced model interpretability. These findings highlight the potential of deep learning in enhancing atmospheric visibility detection techniques, providing valuable insights into the literature and contributing to advances in the field of meteorological observation and public safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.