Correction method can reduce the high deviation between the prediction results of numerical model and the observation results and improve the prediction accuracy. Based on the numerical models, including Rapid Refresh Multi‐scale Analysis and Prediction System‐CHEM and CMA Unified Atmospheric Chemistry Environment, and combined with European Centre for Medium‐Range Weather Forecasts meteorological field model data, a correction method of environmental meteorological model based on Long‐Short‐Term Memory (LSTM) neural network is proposed in this paper. The method mainly includes the following steps: First, the meteorological factors that have the main influence on the PM2.5 concentration are selected by the correlation coefficient method; at the same time, the forecast results of numerical models are used as additional factors, and these factors are taken as the initial characteristics of the LSTM. Then, the network parameters of the LSTM are trained by initial characteristics and corresponding observation data, and the mapping relationship between the input factors and the output PM2.5 concentration is established. Finally, European Centre for Medium‐Range Weather Forecasts data of March 2018 are selected to test the prediction performance of LSTM correction method. Results show that compared with single environment meteorological model, the correlation coefficient, the root mean square error, and the mean absolute error between forecasted and observed PM2.5 concentration in 3–72 hr increased from 0.35–0.7 to 0.55–0.75, decreased from 45.3–67.46 to 37.74–53.7 μg/m3, and decreased by 7.86–16.52%, respectively. It indicates that the forecast performance of LSTM correction model is better than single environment meteorological model.
It is usually difficult to construct the virtual scene of complex environment such as the ship engine room. Therefore, a new method for virtual engine room construction using projection matching and hybrid modeling technology based on geometry and image is presented in this paper. In this method, the optimization technology based on the combination of substitution, bulletin board and detail hierarchy model is adopted so that both a good interactive feature of the virtual cabin can be achieved and the workload can be reduced. Meanwhile, the fidelity and truthfulness degree are all improved. It is proved that a better result can be got with the method.
In this paper the motion stability of submarine was analyzed by using the homotopy continuation algorithm tool MATCONT, the Lyapunov motion stability theory and the bifurcation theory. Then the numerical simulation was used to verify the analysis results and method. The paper proposed an easy and effective method for analysis of submarines motion stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.