RNA interference is a powerful gene-silencing tool with potential clinical applications. However, its therapeutic use is challenging because suitable carriers are unavailable. Exosomes are stable small endogenous vesicles that can transport functional molecules to target cells, making them ideal small interfering RNA (siRNA) carriers. Herein, we elucidated the therapeutic potential of patient-derived exosomes as an siRNA carrier for ovarian cancer (OC) treatment. The exosomes were extracted from the culture medium of primary fibroblasts collected from the omentum of patients with OC during surgery. MET proto-oncogene, receptor tyrosine kinase (MET) was selected for gene silencing, c-Met siRNAs were synthesized and loaded into the exosomes (Met-siExosomes) via electroporation, and the treatment effect of the Met-siExosomes was assessed in vitro and in vivo. The Met-siExosomes downregulated the c-Met protein levels and inhibited OC cell proliferation, migration, and invasion. In xenograft experiments using SKOV3-13 and ES-2 cells, Met-siExosomes were selectively extracted from peritoneally disseminated tumors. Intraperitoneal treatment suppressed the c-Met downstream targets in cancer cells and prolonged mouse survival. The synthesized siRNAs were successfully and selectively delivered via the exosomes to intraperitoneally disseminated tumors. As patients with OC routinely undergo omentectomy and abundant fibroblasts can be easily collected from the omentum, patient-derived exosomes may represent a promising therapeutic siRNA carrier to treat OC.