To research the influences of process parameters on a special extrusion-shearmanufacture method for magnesium alloy rods, deform-3d software with finite elementsimulations has been used to analyze the material flows of deformed magnesium alloysAZ31B during the extrusion-shear (ES) process, as well as the grain sizes anddistribution of extrusion loads, stresses and strains, and blank temperatures. Temperaturefields, stress fields, strain fields and temperature fields varying with different blankpreheating temperatures, extrusion speed and extrusion ratios were simulated. Influences ofdifferent extrusion conditions and different die structures on microstructures of rods prepared by ES process has been researched. Extrusion forces decrease with the increasing extrusion temperatures, decreasing extrusion ratios, increasing die channel angles and decreasing friction coefficients. The flow velocities of metal in the ES die increase with development of ES process. Increasing the channel angles and reducing the friction factors would increase the outflow velocities of metal, but it has little effect on the uniformity of metal flow. The increase in friction and extrusion speed would increase the temperatures of the ES die. The ES process can prepare finer and more uniform microstructures than those prepared by direct extrusion under the same conditions.