Background: Rice blast (causative agent the fungus Pyricularia oryzae) represents a major constraint over the productivity of one of the world’s most important staple foods. Genes encoding resistance have been identified in both the indica and japonica subspecies genepools, and combining these within new cultivars represents a rational means of combating the pathogen.Results: In this research, a deeper allele mining was carried out on Pid-2, Pid-3, and Pid-4 by their specific FNP markers in the three panels consisting of 70 indica and 58 japonica cultivars. Within Pid-2, three functional and one non-functional alleles were identified; the former were only identified in indica type entries. At Pid-3, four functional and one non-functional alleles were identified, and once again, all of the former were present in indica type entries. However, the pattern of variation at Pid-4 was rather different: here, the five functional alleles uncovered were dispersed across the japonica type germplasm. Among all the 12 candidate functional alleles, both Pid2-ZS and Pid3-ZS were predominant.Conclusions: Variation in both Pid-2 and Pid-3 appears to have evolved in response to pathogen pressure exerted on indica type cultivars, while that in Pid-4 reflects the interaction between the fungus and the host in japonica type crops. Owning to the founder lineage, ‘Zhenzhuai 11-ZS97’, rather limited genotypes of the Pid family have been effective in both indica and japonica rice groups, of which Pid2-ZS+Pid3-ZS is present in a large proportion of Chinese indica cultivars released since the 1960s.