Microchannel-based hemodialysis has a potential to improve survival rates and quality of life for end-stage renal disease patients compared to conventional hemodialysis technology. Characterization of hydrodynamic behavior in microchannel geometries is necessary for improving flow uniformity, a critical challenge in realizing a commercial device. A test loop was developed for measuring the impulse response of a tracer dye injected into a dialyzer test article for the purpose of developing residence time distributions (RTD) to characterize lamina design. RTD variance tended to lower for designs that are more dominated, volume-wise, by the microchannel array versus the headers. RTD results also emphasize how defect issues can significantly impact a microchannel device via discrepancies between conceptual and operational devices. A multisegmented CFD model, developed for pairing with the impulse response test loop and dialyzer, showed good agreement between visual observation of the tracer in simulations and experiments, and the shape and peak of the output profiles.