The specific heat Cp and other properties of glasses (ranging from amorphous solids to disordered crystals) at low temperatures, are well known to be markedly different from those in fully-ordered crystals. For decades, this qualitative, and even quantitative, universal behavior of glasses has been thoroughly studied. However, a clear understanding of its origin and microscopic nature, needless to say a closed theory, is still lacking. To shed light on this matter, I review the situation in this work, mainly by compiling and discussing measured low-temperature Cp data of many glasses and disordered crystals, as well as highlighting a few exceptions to that "universality rule". Thus, one can see that, in contrast to other lowtemperature properties of glasses, the magnitude of the "glassy" Cp excess at low temperature is far from being universal. Even worse, some molecular crystals without a clear sign of disorder exhibit linear coefficients in Cp larger than those found in many amorphous solids, whereas a few of the latter show negligible values.