The specific heat of toluene in glass and crystal states, has been measured both at low temperatures down to 1.8 K (using the thermal relaxation method) and in a wide temperature range up to the liquid state (using a quasiadiabatic continuous method). Our measurements therefore extend earlier published data to much lower temperatures, thereby allowing to explore the low-temperature "glassy anomalies" in the case of toluene. Surprisingly, no indication of the existence of tunneling states is found, at least within the temperature range studied. At moderate temperatures, our data either for the glass or for the crystal show good agreement with those found in the literature. Also, we have been able to prepare bulk samples of toluene glass by only doping with 2% mol ethanol instead of with higher impurity doses used by other authors.
We describe a scanning tunneling microscope (STM) that operates at magnetic fields up to 22 T and temperatures down to 80 mK. We discuss the design of the STM head, with an improved coarse approach, the vibration isolation system, and efforts to improve the energy resolution using compact filters for multiple lines. We measure the superconducting gap and Josephson effect in aluminum and show that we can resolve features in the density of states as small as 8 μeV. We measure the quantization of conductance in atomic size contacts and make atomic resolution and density of states images in the layered material 2H–NbSe2. The latter experiments are performed by continuously operating the STM at magnetic fields of 20 T in periods of several days without interruption.
Liquid Helium is used widely, from hospitals to characterization of materials at low temperatures. Many experiments at low temperatures require liquid Helium, particularly when vibration isolation precludes the use of cryocoolers and when one needs to cool heavy equipment such as superconducting coils. Here we describe methods to simplify the operations required to use liquid Helium by eliminating the use of high pressure bottles, avoiding blockage and improving heating and cooling rates. First we show a simple and very low cost method to transfer liquid Helium from a transport container into a cryostat that uses a manual pump having pumping and pressurizing ports, giving a liquid Helium transfer rate of about 100 liters an hour. Second, we describe a closed cycle circuit of Helium gas cooled in an external liquid nitrogen bath that allows precooling a cryogenic experiment without inserting liquid nitrogen into the cryostat, eliminating problems associated to the presence of nitrogen around superconducting magnets. And third, we show a sliding seal assembly and an inner vacuum chamber design that allows inserting large experiments into liquid Helium.
Single crystals of URu2Si2 show below 17.5 K a transition into an ordered state with a significantly reduced entropy. The low temperature phase is called the hidden order (HO) state, because its microscopic origin is still unknown—there are no charge, structural or magnetic transitions associated to HO. Here we report a one-dimensional (1D) charge modulation within the HO state of URu2Si2. We perform detailed Scanning Tunneling Microscopy (STM) experiments with high resolution on many atomically flat surfaces of URu2Si2 obtained by fracturing single crystals at cryogenic temperatures and find a 1D charge density wave with a large wavevector. We show that the 1D modulation is connected to the dynamical magnetic excitations of the HO through a moiré construction and appears as a consequence of excitations quenched through the interaction between the travelling fracture front and the dynamic modes of the crystal. The combination of fracture dynamics and the dynamics of the solid provides a method to create ground states and shows that charge interactions are among the most relevant features competing with HO in URu2Si2.
The specific heat C p of toluene, doped with 2 mol% ethanol to avoid rapid crystallization, has been measured in both glass and crystal states, and with special accuracy at low temperatures in the range 1.8−20 K using the thermal relaxation method. By making use of the complementary C p curves measured in the reference crystal state, we have been able to obtain the entropy curve of the glass and eventually the residual entropy of toluene glass in the zero-temperature limit, that is found to be 5.1 J/(K⋅mol). This value is clearly lower than others previously reported in the literature, which lack the knowledge of the particular specific-heat behavior of glasses at low temperatures and hence overestimated the glass residual entropy at zero temperature. In addition, we have studied in detail such low-temperature "glassy anomalies" in the case of toluene, extending and improving previous measurements. The surprising depletion previously reported of tunneling two-level systems in toluene glass has been confirmed, though this fact coexists with the presence of a broad peak typical of glasses (the socalled boson peak) in C p /T 3 at 4.5 K. For the toluene crystal, the expected cubic Debye behavior has been found at lower temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.