2021
DOI: 10.3390/ijms221910805
|View full text |Cite
|
Sign up to set email alerts
|

Residual Helicity at the Active Site of the Histidine Phosphocarrier, HPr, Modulates Binding Affinity to Its Natural Partners

Abstract: The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 69 publications
0
1
0
Order By: Relevance
“…For instance, in this way, molecular docking and dynamics simulations targeting catalytic and regulatory allosteric sites for searching potential competitive and noncompetitive inhibitors, respectively, have been carried out in our groups [18,19]. Likewise, there is the alternative possibility of designing peptides equivalent to relevant lineal interacting-protein regions (i.e., not conformationally arranged), with the final goal of competing for the binding sites from the protein counterparts and thus disrupting the particular molecular pathway [20,21]. For both approaches, detailed molecular structure data of the target isolated proteins and their complexes are required, as well as knowledge of the molecular pathways of both the cellular response and the pathogen infection involved in each particular case [18][19][20][21].…”
Section: Current General Strategies For the Discovery Of Antimicrobialsmentioning
confidence: 99%
“…For instance, in this way, molecular docking and dynamics simulations targeting catalytic and regulatory allosteric sites for searching potential competitive and noncompetitive inhibitors, respectively, have been carried out in our groups [18,19]. Likewise, there is the alternative possibility of designing peptides equivalent to relevant lineal interacting-protein regions (i.e., not conformationally arranged), with the final goal of competing for the binding sites from the protein counterparts and thus disrupting the particular molecular pathway [20,21]. For both approaches, detailed molecular structure data of the target isolated proteins and their complexes are required, as well as knowledge of the molecular pathways of both the cellular response and the pathogen infection involved in each particular case [18][19][20][21].…”
Section: Current General Strategies For the Discovery Of Antimicrobialsmentioning
confidence: 99%