The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot.
Three different immunoglobulin (Ig) isotypes can be found in teleost fish, IgM, IgD, and the teleost-specific IgT. IgM is considered to have a systemic activity, and IgT is attributed a mucosal role, similar to mammalian IgA. In this study, the complete sequence of gilthead sea bream IgM and IgT in their membrane (m) and soluble (s) forms are described for the first time in a perciform fish. Their constitutive gene expression is analyzed in different tissues, and their regulation upon viral, bacterial, parasitic, mucosal vaccination and dietary challenges are studied. GCB IgM and IgT have the prototypical structure when compared to other fish Igs. The constitutive expression of sIgM was the highest overall in all tissues, whereas mIgT expression was highest in mucosal tissues, such as gills and intestine. IgM and IgT were differentially regulated upon infection. IgT was highly upregulated locally upon infection with the intestinal parasite Enteromyxum leei or systemically after Nodavirus infection. Long-term intestinal parasitic infections increased the serum titer of both isotypes. Mucosal vaccination against Photobacterium damselae subsp. piscicida finely regulated the Ig response inducing a systemic increase of IgM titers in serum and a local IgT response in skin mucus when animals were exposed to the pathogen by bath challenge. Interestingly, plant-based diets inhibit IgT upregulation upon intestinal parasitic challenge, which was related to a worse disease outcome. All these results corroborate the mucosal role of IgT and emphasize the importance of a finely tuned regulation of Ig isotypes upon infection, which could be of special interest in vaccination studies.
BackgroundThe Mediterranean mussel (Mytilus galloprovincialis) is a cosmopolitan, cultured bivalve with worldwide commercial and ecological importance. However, there is a qualitative and quantitative lack of knowledge of the molecular mechanisms involved in the physiology and immune response of this mollusc. In order to start filling this gap, we have studied the transcriptome of mantle, muscle and gills from naïve Mediterranean mussels and hemocytes exposed to distinct stimuli.ResultsA total of 393,316 million raw RNA-Seq reads were obtained and assembled into 151,320 non-redundant transcripts with an average length of 570 bp. Only 55 % of the transcripts were shared across all tissues. Hemocyte and gill transcriptomes shared 60 % of the transcripts while mantle and muscle transcriptomes were most similar, with 77 % shared transcripts. Stimulated hemocytes showed abundant defense and immune-related proteins, in particular, an extremely high amount of antimicrobial peptides. Gills expressed many transcripts assigned to both structure and recognition of non-self patterns, while in mantle many transcripts were related to reproduction and shell formation. Moreover, this tissue presented additional and interesting hematopoietic, antifungal and sensorial functions. Finally, muscle expressed many myofibril and calcium-related proteins and was found to be unexpectedly associated with defense functions. In addition, many metabolic routes related to cancer were represented.ConclusionsOur analyses indicate that whereas the transcriptomes of these four tissues have characteristic expression profiles in agreement with their biological structures and expected functions, tissue-specific transcriptomes reveal a complex and specialized functions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1817-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.