The article is devoted to problems of ensuring durability of steel concrete elements of buildings. It is shown that durability depends on their residual and service life. Normalizing of the latter is generalized, not sufficiently substantiated and non-regulatory. Computational techniques to assess the construction durability are not yet available. Actual and informative is determining the residual life of steel concrete structures. It was noted that the reason for the reduction in the carrying capacity of steel concrete structures and, accordingly, the residual life is corrosion damage of concrete and reinforcement due to an aggressive environment. This paper analyzes the modern methods of calculating residual life of flexural elements with corrosion, identifies their advantages and disadvantages in building inspection. The residual life should be determined on the basis of field surveys, when the maximum corrosion damage is found in various design sections. The physical and statistical approach is the most promising and acceptable for assessing and predicting the residual life of flexural steel concrete elements. The value of the residual life is proposed to be established with regard to reliability coefficient. Considering the ever increasing cases of early loss of bearing capacity of steel concrete structures due to corrosion damage, it is advisable to include mandatory requirements in construction design standards of calculating on a new ultimate limit state.