Abstract:The correct diagnosis and recognition of crop diseases play an important role in ensuring crop yields and preventing food safety. The existing methods for crop disease recognition mainly focus on accuracy while ignoring the algorithm’s robustness. In practice, the acquired images are often accompanied by various noises. These noises lead to a huge challenge for improving the robustness and accuracy of the recognition algorithm. In order to solve this problem, this paper proposes a residual self-calibration and… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.