The correct diagnosis and recognition of crop diseases play an important role in ensuring crop yields and preventing food safety. The existing methods for crop disease recognition mainly focus on accuracy while ignoring the algorithm’s robustness. In practice, the acquired images are often accompanied by various noises. These noises lead to a huge challenge for improving the robustness and accuracy of the recognition algorithm. In order to solve this problem, this paper proposes a residual self-calibration and self-attention aggregation network (RCAA-Net) for crop disease recognition in actual scenarios. The proposed RCAA-Net is composed of three main modules: (1) multi-scale residual module, (2) feedback self-calibration module, and (3) self-attention aggregation module. Specifically, the multi-scale residual module is designed to learn multi-scale features and provide both global and local information for the appearance of the disease to improve the performance of the model. The feedback self-calibration is proposed to improve the robustness of the model by suppressing the background noise in the original deep features. The self-attention aggregation module is introduced to further improve the robustness and accuracy of the model by capturing multi-scale information in different semantic spaces. The experimental results on the challenging 2018ai_challenger crop disease recognition dataset show that the proposed RCAA-Net achieves state-of-the-art performance on robustness and accuracy for crop disease recognition in actual scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.