In this work, the mechanical behavior of the coated ADI system is studied. For this purpose, single layer Ti and bilayer Ti/TiN and TiAl/TiAlN coatings, with different thicknesses, were deposited by the PVD technique of cathodic arc deposition on high strength ADI substrates using industrial and experimental devices. The characterization of the coatings includes the measurement of the layer thicknesses by the spherical abrasion method, the determination of existing phases and residual stresses by x-ray diffraction and the evaluation of the surface topography using a stylus profilometer. The analysis of the mechanical properties of the coatings comprises the measurement of the surface hardness by micro indentation tests and the evaluation of the scratch resistance. The scratch tests were performed on a scratch tester equipped with a Rockwell indenter. A progressive load from 1 to 100 N, a load rate of 99 N/min, a speed of 5 mm/min and a scratch length of 5 mm were employed. The influence of the coatings characteristics on the scratch resistance of the coated samples and the friction coefficients obtained are evaluated. The results show that Ti coated samples had tensile residual stresses, the lowest surface hardness and the lowest critical loads for scratch adhesion strength. The samples coated with Ti/TiN and TiAl/TiAlN had highly compressive residual stresses and the highest critical loads, while the hardness was higher for TiAl/TiAlN. On the other hand, the evolution of the friction coefficient was similar for all the coated samples.