A coupled model of coating formation on the surface of a part of a cylindrical shape during deposition from the plasma is proposed. This model takes into account the phenomena of thermal diffusion, diffusive thermal conductivity, and mass transfer under the action of the stress gradient, and the formation of chemical compounds. The coating growth rate is considered to be a given function of the particle velocity and particle concentration near the surface of the growing coating. The problem is solved numerically. It is shown that diffusion cross-fluxes, diffusive thermal conductivity, and thermal diffusion during the growth process reduce the width of the transition zone between the substrate and the coating. This effect becomes most essential if the substrate has a low thermal conductivity. Accounting for stresses arising in the coating-substrate system during the deposition process changes the effective transfer coefficients and significantly affects the result of modeling the distribution of chemical elements and their compounds in the coating.
The paper is devoted to the development of an algorithm for the automated calculation of force characteristics of cycloid toothing when the initial parameters vary widely. The algorithm forms a structured data array that accelerates finding and outputting the necessary parameters and reduces the probability of error in determining these parameters. The algorithm serves the basis for a program that allows for the examination of the change in force and geometrical parameters in various combinations. The study includes the analysis of the dependence of forces and contact stresses in transmission toothing with intermediate rolling elements and a free cage on the initial parameters of this transmission. The obtained results will make it possible to select optimal combinations of initial parameters in order to minimize the force impact on the mechanism parts when designing modern compact mechanisms based on the cycloid with intermediate rolling elements and a free cage.
A mathematical model of a coating that grows during magnetron deposition is formulated and examined. The effect of the main technological and kinetic parameters on the coating growth dynamics is investigated.
The heat and kinetic phenomena accompanying the carbide coating growth during deposition from plasma are investigated numerically. The coupling model taking into account some cross-effects between fields of various physical natures was used here. The phase, elements distribution, stresses and strains in the growing coating and substrate of cylindrical form where calculated. It is demonstrated that interrelation between diffusion and deformation plays a significant role for coating composition change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.