The modulus and damping properties of soils in compression are a function of soil type, water content, stress history and loading rate. To model human-surface interaction with natural turf sports surfaces, stiffness and damping properties must be determined at dynamic loading rates. Two contrasting soil types, a Sand and a Clay Loam, commonly used in sports surfaces were loaded uniaxially to 2 kN at loading rates between 0.6 and 6 kN s -1 in modified dynamic soil testing apparatus. Soils were compacted prior to loading but initial cycles resulted in viscoplastic deformation, with strain accumulation with repeated cycles of loading. Ultimately a resilient, viscoelastic steady-state equilibrium with loading was established. Resilient modulus and damping ratio varied with soil type, water content, stress history and increased significantly with loading rate. The resilient modulus of the Sand soil, typical of modern free-draining sand construction natural turf sports surfaces, was significantly greater than that of a Clay Loam soil more characteristic of traditional natural turf surfaces; reducing water content caused an increase in modulus and a decrease in damping ratio in the Clay Loam soil. Determination of these properties provides initial data for the modelling natural turf surface behaviour in terms of both ball and human interactions, with further research required to determine the effect of both grass roots and leaves on mechanical behaviour.