Shigella dysenteriae, is a Gram-negative bacterium that emerged as the second most significant cause of bacillary dysentery. Antibiotic treatment is vital in lowering Shigella infection rates, yet the growing global resistance to broad-spectrum antibiotics poses a significant challenge. The persistent multidrug resistance of S. dysenteriae complicates its management and control. Hence, there is an urgent requirement to discover novel therapeutic targets and potent medications to prevent and treat this disease. Therefore, the integration of bioinformatics methods such as subtractive and comparative analysis provides a pathway to compute the pan-genome of S. dysenteriae. In our study, we analysed a dataset comprising 27 whole genomes. The S. dysenteriae strain SD197 was used as the reference for determining the core genome. Initially, our focus was directed towards the identification of the proteome of the core genome. Moreover, several filters were applied to the core genome, including assessments for non-host homology, protein essentiality, and virulence, in order to prioritize potential drug targets. Among these targets were Integration host factor subunit alpha and Tyrosine recombinase XerC. Furthermore, four drug-like compounds showing potential inhibitory effects against both target proteins were identified. Subsequently, molecular docking analysis was conducted involving these targets and the compounds. This initial study provides the list of novel targets against S. dysenteriae. Conclusively, future in vitro investigations could validate our in-silico findings and uncover potential therapeutic drugs for combating bacillary dysentery infection.