i Ultra-high molecular weight polyethylene (UHMWPE) molecules, with molecular weights approaching 10 7 Da and lengths approaching 10 μm, can be gel spun and drawn into highly crystalline fibers with more than 95% of the molecules oriented in the fiber direction. The very high tensile strength (approaching 4 GPa) and elastic modulus (200 GPa) combined with a very low density (970 kg m -3 ) result in a fiber with very high specific strength and modulus. While the strength per unit mass of the materials in the fiber direction is ~25 times greater than that of conventional steels, weak (van der Waals) bonds between molecules leads to strengths transverse to the fibers of only a thousandth that in the fiber direction. This weak intermolecular strength also leads to creep deformation under prolonged loading at ambient temperatures, and complete failure of the polymer when the intermolecular bonds "melt" at 155°C. These materials are therefore used in weight sensitive applications, where a high uniaxial stress must be supported for relatively short periods of time. Examples include mooring cables, the sails of racing ships and ballistic impact protection panels. For ballistic applications, the The dissertation also investigated the mechanisms of projectile penetration during impact of UHMWPE fiber-reinforced composites with a spherical projectile using model targets designed to dynamically load the laminates in different ways. The response of the samples were studied using a combination of synchronized high speed photography with three cameras, and 3D digital image correlation together with post-test characterization via X-ray tomography and optical microscopy. It was found that a rear supported laminate, which was prevented from deflecting, was progressively penetrated by the projectile. Since the projectile applied only a compressive pressure to the laminate, it is To my wife, Brenna, you have sacrificed more than anyone in this pursuit. I can never repay all that you have given, your love, affection, advice and support, and all of the sleep, weekends and time apart (both physically and mentally) that we have lost. Igive you my deepest and most humble thank you.