FeMnCrSi alloys have been developed and studied over the past several years with an emphasis on their use as coatings on CA6NM stainless steel hydroturbine components. Much of the work conducted has focused on the optimization of cavitation resistance through chemical composition changes, the use of different thermal spraying (ASP, HVOF, HVAF) and welding (PTA) processes, and post-treatments such as shot-peening, cold working, and PTA remelting. The aim of this current work is to present a compilation of published articles that report on the research that has been done. Among the trends observed is that coating density and cavitation resistance improve with increasing particle velocity, particularly for HVOF-kerosene spraying. In regard to post-treatments, cold working was found to most effective, reducing cavitation mass loss (in PTA FeMnCrSi coatings) by a factor of nearly two.