a b s t r a c tWe have synthesized a large amount of boron-doped multiwalled carbon nanotubes (MWNTs) by hot-filament chemical vapor deposition. The synthesis was carried out in a flask using a methanol solution of boric acid as a source material. The scanning electron microscopy, transmission electron microscopy, and micro-Raman spectroscopy were performed to evaluate the structural properties of the obtained MWNTs. In order to evaluate the electrical properties, temperature dependence of resistivity was measured in an individual MWNTs with four metal electrodes. The Raman shifts suggest carrier injection into the borondoped MWNTs, but the resistivity of the MWNTs was high and increased strongly with decreasing temperature. Defects induced by the plasma may cause this enhanced resistivity.