Abstract. Recent solvers for quantified boolean formulas (QBF) use a clause learning method based on a procedure proposed by Giunchiglia et al. (JAIR 2006), which avoids creating tautological clauses. Recently, an exponential worst case for this procedure has been shown by Van Gelder (CP 2012). That paper introduced QBF Pseudo Unit Propagation (QPUP) for non-tautological clause learning in a limited setting and showed that its worst case is theoretically polynomial, although it might be impractical in a high-performance QBF solver, due to excessive time and space consumption. No implementation was reported. We describe an enhanced version of QPUP learning that is practical to incorporate into high-performance QBF solvers, being compatible with pure-literal rules and dependency schemes. It can be used for proving in a concise format that a QBF formula is either unsatisfiable or satisfiable (working on both proofs in tandem). A lazy version of QPUP permits non-tautological clauses to be learned without actually carrying out resolutions, but this version is unable to produce proofs. Experimental results show that QPUP is somewhat faster than the previous nontautological clause learning procedure on benchmarks from QBFEVAL-12-SR.