The contrast of an image can be degraded by the presence of background light and sensor noise.To overcome this degradation, quantum illumination protocols have been theorised (Science 321 (2008), Physics Review Letters 101 (2008)) that exploit the spatial correlations between photonpairs. Here we demonstrate the first full-field imaging system using quantum illumination, by an enhanced detection protocol. With our current technology we achieve a rejection of background and stray light of order 5 and also report an image contrast improvement up to a factor of 5.5, which is resilient to both environmental noise and transmission losses. The quantum illumination protocol differs from usual quantum schemes in that the advantage is maintained even in the presence of noise and loss. Our approach may enable laboratory-based quantum imaging to be applied to real-world applications where the suppression of background light and noise is important, such as imaging under low-photon flux and quantum LIDAR.Conventional illumination uses a spatially and temporally random sequence of photons to illuminate an object, whereas quantum illumination can use spatial correlations between pairs of photons to achieve performance enhancements in the presence of noise and/or losses. This enhancement is made possible by using detection techniques that preferentially select photon-pair events over isolated background events.The quantum illumination protocol was introduced by Lloyd [1], and generalized to Gaussian states by Tan et al. [2], where they proposed a practical version of the protocol. Quantum illumination has applications in the context of quantum information protocol such as secure communication [3,4] where it secures communication against passive eavesdropping techniques that take advantage of noise and losses. The protocol has also been proposed to be useful for detecting the presence of a target object embedded within a noisy background, despite environmental perturbations and losses destroying the initial entanglement [5,6,7].In 2013, Lopaeva et al. performed an experimental demonstration of the quantum illumination principle, to determine the presence or absence of a semi-transparent object, by exploiting intensity correlations of a quantum origin in the presence of thermal light [8]. Additionally, a quantum illumination protocol has been experimentally demonstrated in the microwave domain [9] and a further demonstration in which joint detection of the signal and idler is not required [10]. However, these previous demonstrations were restricted 1 to simply detecting the presence or absence of a target, rather than performing any form of spatially resolved imaging. The acquisition of an image using quantum illumination has recently been reported [11], but that demonstration was performed using a mono-mode source of correlations and by raster-scanning the object within this single-mode beam. The aforementioned demonstration may be seen as a qualitative assessment of the method but a full field imaging implementation of the qua...