“…Strain and epitaxy conditions may change the crystal structure of elemental metals, giving rise to artificially tailored magnetic properties that are not available in the corresponding bulk materials. RSXMR has been applied in prototypical studies: for example, to resolve the spin orientation structure of ultrathin fcc Fe films on Cu(001) [93,94]; to resolve the induced moment in uranium in U/Fe multilayers [95]; to probe the interlayer coupling in ferromagnetic/semiconductor multilayers [96]; and to measure the value of the magnetic moment, its orientation, and depth profiles in Fe/C [97], Gd/Fe [98][99][100], and Co/Mg [101] multilayers or in Cu/Fe/Cu trilayers on a semiconductor [102]. Carlomagno et al [103] investigated, through resonant X-ray reflectivity, the structural and magnetic properties of a MgO/Co/MgO trilayer, evidencing difference in Co oxidation and roughness between the bottom (Co on MgO) and top (MgO on Co) interfaces, which was reflected in an asymmetric magnetization profile for the Co layer.…”