Small-angle neutron scattering (SANS) is one of the most important techniques for microstructure determination, being utilized in a wide range of scientific disciplines, such as materials science, physics, chemistry, and biology. The reason for its great significance is that conventional SANS is probably the only method capable of probing structural inhomogeneities in the bulk of materials on a mesoscopic real-space length scale, from roughly 1 − 300 nm. Moreover, the exploitation of the spin degree of freedom of the neutron provides SANS with a unique sensitivity to study magnetism and magnetic materials at the nanoscale. As such, magnetic SANS ideally complements more real-space and surface-sensitive magnetic imaging techniques, e.g., Lorentz transmission electron microscopy, electron holography, magnetic force microscopy, Kerr microscopy, or spinpolarized scanning tunneling microscopy. In this review article we summarize the recent applications of the SANS method to study magnetism and magnetic materials. This includes a wide range of materials classes, from nanomagnetic systems such as soft magnetic Fe-based nanocomposites, hard magnetic Nd−Fe−B-based permanent magnets, magnetic steels, ferrofluids, nanoparticles, and magnetic oxides, to more fundamental open issues in contemporary condensed matter physics such as skyrmion crystals, noncollinar magnetic structures in noncentrosymmetric compounds, magnetic/electronic phase separation, and vortex lattices in type-II superconductors. Special attention is paid not only to the vast variety of magnetic materials and problems where SANS has provided direct insight, but also to the enormous progress made regarding the micromagnetic simulation of magnetic neutron scattering.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The D33 small-angle neutron scattering (SANS) instrument at the Institut Laue-Langevin (ILL) is the most recent SANS instrument to be built at the ILL. In a project beginning in 2005 and lasting seven years, the concept has been developed, and the instrument designed, manufactured and installed. D33 was commissioned with neutrons during the second half of 2012, fully entering the ILL user programme in 2013. The scientific case required that D33 should provide a wide dynamic range of measured scattering vector magnitude q, flexibility with regard to the instrument resolution, and the provision of polarized neutrons and 3 He spin analysis to facilitate and expand studies in magnetism. In monochromatic mode, a velocity selector and a flexible system of inter-collimation apertures define the neutron beam. A double-chopper system enables a time-of-flight (TOF) mode of operation, allowing an enhanced dynamic q range (q max /q min ) and a flexible wavelength resolution. Two large multitube detectors extend the dynamic q range further, giving q max /q min ' 25 in monochromatic mode and a very large q max /q min > 1000 in TOF mode. The sample zone is large and flexible in configuration, accommodating complex and bulky sample environments, while the position of D33 is such as to allow high magnetic fields at the sample position. The instrument is of general purpose with a performance rivalling that of D22, and is well adapted for SANS studies in scientific disciplines as diverse as solution scattering in biology and soft matter and studies of physics, materials science and magnetism. This article provides a detailed technical description of D33 and its performance and characterization of the individual components, and serves as a technical reference for users of the instrument.
Magnetospirillum gryphiswaldense is a microorganism with the ability to biomineralize magnetite nanoparticles, called magnetosomes, and arrange them into a chain that behaves like a magnetic compass. Rather than straight lines, magnetosome chains are slightly bent, as evidenced by electron cryotomography. Our experimental and theoretical results suggest that due to the competition between the magnetocrystalline and shape anisotropies, the effective magnetic moment of individual magnetosomes is tilted out of the [111] crystallographic easy axis of magnetite. This tilt does not affect the direction of the chain net magnetic moment, which remains along the [111] axis, but explains the arrangement of magnetosomes in helical-like shaped chains. Indeed, we demonstrate that the chain shape can be reproduced by considering an interplay between the magnetic dipolar interactions between magnetosomes, ruled by the orientation of the magnetosome magnetic moment, and a lipid/protein-based mechanism, modeled as an elastic recovery force exerted on the magnetosomes.
Neutron-scattering experiments reveal a hexagonally crystallized form of noncollinear magnetic order in an itinerant magnet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.