Nowadays, magnetic hyperthermia constitutes a complementary approach to
cancer treatment. The use of magnetic particles as heating mediators, proposed
in the 1950s, provides a novel strategy for improving tumor treatment and,
consequently, patient quality of life. This review reports a broad overview
about several aspects of magnetic hyperthermia addressing new perspectives and
the progress on relevant features such as the ad hoc preparation of magnetic
nanoparticles, physical modeling of magnetic heating, methods to determine the
heat dissipation power of magnetic colloids including the development of
experimental apparatus and the influence of biological matrices on the heating
efficiency.Comment: 104 pages, 28 figures. Manuscript accepted for publication in Applied
Physics Review
Small-angle neutron scattering (SANS) is one of the most important techniques for microstructure determination, being utilized in a wide range of scientific disciplines, such as materials science, physics, chemistry, and biology. The reason for its great significance is that conventional SANS is probably the only method capable of probing structural inhomogeneities in the bulk of materials on a mesoscopic real-space length scale, from roughly 1 − 300 nm. Moreover, the exploitation of the spin degree of freedom of the neutron provides SANS with a unique sensitivity to study magnetism and magnetic materials at the nanoscale. As such, magnetic SANS ideally complements more real-space and surface-sensitive magnetic imaging techniques, e.g., Lorentz transmission electron microscopy, electron holography, magnetic force microscopy, Kerr microscopy, or spinpolarized scanning tunneling microscopy. In this review article we summarize the recent applications of the SANS method to study magnetism and magnetic materials. This includes a wide range of materials classes, from nanomagnetic systems such as soft magnetic Fe-based nanocomposites, hard magnetic Nd−Fe−B-based permanent magnets, magnetic steels, ferrofluids, nanoparticles, and magnetic oxides, to more fundamental open issues in contemporary condensed matter physics such as skyrmion crystals, noncollinar magnetic structures in noncentrosymmetric compounds, magnetic/electronic phase separation, and vortex lattices in type-II superconductors. Special attention is paid not only to the vast variety of magnetic materials and problems where SANS has provided direct insight, but also to the enormous progress made regarding the micromagnetic simulation of magnetic neutron scattering.
The effects of the hydrogenation-disproportionation-desorption-recombination (HDDR) processing conditions on the microstructure and magnetic properties of NdFeB powders prepared from recycling sintered N42 grade magnets were evaluated. Temperatures below 840 oC and above 900 oC are deleterious to HDDR powders’ properties. The hydrogen pressure, ranging from 60 to 135 kPa, has a major influence on the remanence compared to that on the intrinsic coercivity. The best magnetic properties (Jr = 0.58 T and μ0Hc = 1.15 T) were obtained with Trecomb = 860 °C, PH2 = 135 kPa, and trecomb = 330 s. Such coercivity value corresponds to 93% of the starting material, not achieved yet by optimizing the HDDR process and without using Dy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.