An atomistic understanding of the photoinduced spin-state switching (PSS) within polynuclear systems of d 4 -d 7 transition metal ion complexes is required for their rational integration into light-driven reactions of chemical and biological interests. However, in contrast to mononuclear systems, the multidimensional dynamics of the PSS in solvated molecular arrayshave not yet been elucidated, due to the expected complications associated to the connectivity between the metal centers and the strong interactions with the surroundings. In this work, the PSS in a solvated triiron(II) metallogrid complex is characterized using transient optical absorption and X-ray emission spectroscopies on the femtosecond timescale. The complementary measurements reveal the photoinduced creation of energy-rich (hot) and longlived quintet states, whose dynamics differ critically from their mononuclear congeners. This finding opens major prospects for developing novel schemes in solution-phase spin chemistry that are driven by the dynamic PSS process in compact oligometallic arrays.
TOC GRAPHICSKEYWORDS molecular squares, photophysics, time-resolved X-ray techniques, light-induced processes, ultrafast phenomena, spin-state switching.