The increasing demand to tactilely measure micro-electro-mechanical systems featuring high aspect ratios leads to probing systems with low stiffness and small touching elements (e.g. ruby balls). Thus, more challenges arise because of an increasing influence of the so-called micro world effects. Sticking is one crucial effect which generates measurement faults like snap back and false triggering. This paper presents a highly accurate electrostatic probing system which operates at resonant motion to minimize the influence of capillary forces. The unique feature of the uniaxial nanoprobe is the fully integrated design in a silicon-on-insulator substrate which minimizes the number of coupling connections and improves the measurement accuracy.