The present study reports an eco-friendly, biosynthesis of silver nanoparticles (AgNPs) using stem bark extract of Diospyros montana. Initially, the synthesis of AgNPs was confirmed by visual observation as color change. Further, the morphology of the biosynthesized nanoparticles, average size and presence of elemental silver were characterized by UV-Visible spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray and dynamic light scattering spectrometer. Qualitative phytochemical screening and FTIR spectral peaks supported the role of phytochemicals in bark extract for the metal reduction, stabilization and capping of silver nanoparticles. XRD studies demonstrated that crystalline nature and their average size of nanoparticles was 28 nm as determined by Scherrer's formula. The antioxidant ability of AgNPs and plant extract was analyzed using DPPH and Hydrogen peroxide assay. The percentage of DPPH and H 2 O 2 activity was increased with increasing concentration of AgNPs. In vitro antibacterial effect of various concentration of AgNPs was investigated against both Gram positive (B.subtilis and S.aureus) and Gram negative (E.coli and K.aerogenes) bacterial strains. The result shows that biosynthesized AgNPs have significant antibacterial activity.