Utilizing nanosecond high voltage pulses to drive microdischarges (MDs) at repetition rates in the vicinity of 1 MHz previously enabled increased time-averaged power deposition, peak vacuum ultraviolet (VUV) power yield, as well as time-averaged VUV power yield. Here, various pulse widths (30-250 ns), and pulse repetition rates (100 kHz-5 MHz) are utilized, and the resulting VUV yield is reported. It was observed that the use of a 50 ns pulse width, at a repetition rate of 100 kHz, provided 62 W peak VUV power and 310 mW time-averaged VUV power, with a time-averaged VUV generation efficiency of ∼1.1%. Optimization of the driving parameters resulted in 1-2 orders of magnitude increase in peak and time-averaged power when compared to low power, dc-driven MDs.