This paper presents the experiments and simulations on the resonance-induced acceleration of the reverse Brazil nut effect (RBNE)-Brazil nut effect (BNE) segregation inversion of binary mixtures in flat-bottom and circular-bottom containers. Both experimental and simulation results indicate that the starting location of the sinkage of heavier grains at the top layer is triggered with certain randomness in the flat-bottom container, whereas it first occurs at either of the lateral edges of the bottom in the circular-bottom container. The quantified segregation factors in simulations show that the transition from the RBNE segregation state to the BNE segregation state happens faster in the circular-bottom container than that in the flat-bottom container. The occurrence of standing-wave resonant spots of higher and lower granular temperature accelerates the RBNE-BNE segregation inversion. From the elastic collision model of single grain, the bottom with a larger angle leads to more energy transfer from the vertical direction to the horizontal direction. The theoretical predictions are confirmed by the simulations of a monodisperse granular bed. The flatbottom container has a uniform distribution with a standing-wave period of granular temperature and packing density, whereas the circular-bottom container possesses a higher granular temperature in the horizontal direction and a lower packing density at the lateral edges of the circular bottom. Owing to the buoyancy effect, heavier grains easily sink first at the resonant spots with higher temperature.