Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A note on versions:The version presented here is a working paper or pre-print that may be later published elsewhere. If a published version is known of, the above WRAP url will contain details on finding it. Abstract-Due to increasing product variety and complexity, capability to support reconfiguration is a key competitiveness indicator for current automation system within large enterprises. Reconfigurable manufacturing systems could efficiently reuse existing knowledge in order to decrease the required skills and design time to launch new products. However, most of the software tools developed to support design of reconfigurable manufacturing system lack integration of product, process and resource knowledge, and the design data is not transferred from domain-specific engineering tools to a collaborative and intelligent platform to capture and reuse design knowledge. The focus of this research study is to enable integrated automation systems design to support a knowledge reuse approach to predict process and resource changes when product requirements change. The proposed methodology is based on a robust semantic-predictive model supported by ontology representations and predictive algorithms for the integration of Product, Process, Resource and Requirement (PPRR) data, so that future automation system changes can be identified at early design stages.