Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Through a CX3C chemokine motif ( 182 CWAIC 186 ) in the G protein, RSV binds to the corresponding chemokine receptor, CX3CR1. Since RSV binding to CX3CR1 contributes to disease pathogenesis, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A 186 , within the CX3C motif, mutating it to CX4C ( 182 CWAIAC 187 ), which is known to block binding to CX3CR1, might decrease disease. We studied the effect of the CX4C mutation in two strains of RSV (A2 and r19F) in a mouse challenge model. We included RSV r19F because it induces mucus production and airway resistance, two manifestations of RSV infection in humans, in mice. Compared to wild-type (wt) virus, mice infected with CX4C had a 0.7 to 1.2 log 10 -fold lower virus titer in the lung at 5 days postinfection (p.i.) and had markedly reduced weight loss, pulmonary inflammatory cell infiltration, mucus production, and airway resistance after challenge. This decrease in disease was not dependent on decrease in virus replication but did correspond to a decrease in pulmonary Th2 and inflammatory cytokines. Mice infected with CX4C viruses also had higher antibody titers and a Th1-biased T cell memory response at 75 days p.i. These results suggest that the CX4C mutation in the G protein could improve the safety and efficacy of a live attenuated RSV vaccine.IMPORTANCE RSV binds to the corresponding chemokine receptor, CX3CR1, through a CX3C chemokine motif ( 182 CWAIC 186 ) in the G protein. RSV binding to CX3CR1 contributes to disease pathogenesis; therefore, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A 186 , within the CX3C motif, mutating it to CX4C ( 182 CWAIAC 187 ), known to block binding to CX3CR1, might decrease disease. The effect of this mutation and treatment with the F(ab=) 2 form of the anti-RSV G 131-2G monoclonal antibody (MAb) show that mutating the CX3C motif to CX4C blocks much of the disease and immune modulation associated with the G protein and should improve the safety and efficacy of a live attenuated RSV vaccine.
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Through a CX3C chemokine motif ( 182 CWAIC 186 ) in the G protein, RSV binds to the corresponding chemokine receptor, CX3CR1. Since RSV binding to CX3CR1 contributes to disease pathogenesis, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A 186 , within the CX3C motif, mutating it to CX4C ( 182 CWAIAC 187 ), which is known to block binding to CX3CR1, might decrease disease. We studied the effect of the CX4C mutation in two strains of RSV (A2 and r19F) in a mouse challenge model. We included RSV r19F because it induces mucus production and airway resistance, two manifestations of RSV infection in humans, in mice. Compared to wild-type (wt) virus, mice infected with CX4C had a 0.7 to 1.2 log 10 -fold lower virus titer in the lung at 5 days postinfection (p.i.) and had markedly reduced weight loss, pulmonary inflammatory cell infiltration, mucus production, and airway resistance after challenge. This decrease in disease was not dependent on decrease in virus replication but did correspond to a decrease in pulmonary Th2 and inflammatory cytokines. Mice infected with CX4C viruses also had higher antibody titers and a Th1-biased T cell memory response at 75 days p.i. These results suggest that the CX4C mutation in the G protein could improve the safety and efficacy of a live attenuated RSV vaccine.IMPORTANCE RSV binds to the corresponding chemokine receptor, CX3CR1, through a CX3C chemokine motif ( 182 CWAIC 186 ) in the G protein. RSV binding to CX3CR1 contributes to disease pathogenesis; therefore, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A 186 , within the CX3C motif, mutating it to CX4C ( 182 CWAIAC 187 ), known to block binding to CX3CR1, might decrease disease. The effect of this mutation and treatment with the F(ab=) 2 form of the anti-RSV G 131-2G monoclonal antibody (MAb) show that mutating the CX3C motif to CX4C blocks much of the disease and immune modulation associated with the G protein and should improve the safety and efficacy of a live attenuated RSV vaccine.
BackgroundInfluenza is an important cause of acute lower respiratory tract infection (aLRTI), hospitalization, and mortality in children. This study aimed to describe the clinical and epidemiologic patterns and infection factors associated with influenza, and compare case features of influenza A and B.MethodsIn a prospective, cross-sectional study, patients admitted for aLRTI, between 2000 and 2015, were tested for respiratory syncytial virus, adenovirus, influenza, or parainfluenza, and confirmed by fluorescent antibody (FA) or real-time polymerase chain reaction (RT-PCR) assay of nasopharyngeal aspirates.ResultsOf 14,044 patients, 37.7% (5290) had FA- or RT-PCR-confirmed samples that identified influenza in 2.8% (394/14,044; 91.4% [360] influenza A, 8.6% [34] influenza B) of cases. Influenza frequency followed a seasonal epidemic pattern (May–July, the lowest average temperature months). The median age of cases was 12 months (interquartile range: 6–21 months); 56.1% (221/394) of cases were male. Consolidated pneumonia was the most frequent clinical presentation (56.9%; 224/394). Roughly half (49.7%; 196/394) of all cases had previous respiratory admissions; 9.4% (37/394) were re-admissions; 61.5% (241/392) had comorbidities; 26.2% (102/389) had complications; 7.8% (30/384) had nosocomial infections. The average case fatality rate was 2.1% (8/389). Chronic neurologic disease was significantly higher in influenza B cases compared to influenza A cases (p = 0.030). The independent predictors for influenza were: age ≥6 months, odds ratio (OR): 1.88 (95% confidence interval [CI]: 1.44–2.45); p<0.001; presence of chronic neurologic disease, OR: 1.48 (95% CI: 1.01–2.17); p = 0.041; previous respiratory admissions, OR: 1.71 (95% CI: 1.36–2.14); p<0.001; re-admissions, OR: 1.71 (95% CI: 1.17–2.51); p = 0.006; clinical pneumonia, OR: 1.50 (95% CI: 1.21–1.87); p<0.001; immunodeficiency, OR: 1.87 (95% CI: 1.15–3.05); p = 0.011; cystic fibrosis, OR: 4.42 (95% CI: 1.29–15.14); p = 0.018.ConclusionInfluenza showed an epidemic seasonal pattern (May–July), with higher risk in children ≥6 months, or with pneumonia, previous respiratory admissions, or certain comorbidities.
Background: With the enormous morbidity and mortality caused by respiratory syncytial virus (RSV) infections among infants and the elderly, vaccines against RSV infections are in large market demand. Methods: We conducted a first-in-human (FIH), randomized, double-blind, placebo-controlled dose escalation study to evaluate the safety and immunogenicity response of the rRSV vaccine (BARS13) in healthy adults aged 18–45. A total of 60 eligible participants were randomly assigned to receive one of four dose levels or vaccination regimens of BARS13 or placebo at a 4:1 ratio. Results: The mean age was 27.40, and 23.3% (14/60) were men. No treatment-emergent adverse events (TEAEs) led to study withdrawal within 30 days after each vaccination. No serious adverse event (SAE) was reported. Most of the treatment-emergent adverse events (TEAEs) recorded were classified as mild. The high-dose repeat group had a serum-specific antibody GMC of 885.74 IU/mL (95% CI: 406.25–1931.17) 30 days after the first dose and 1482.12 IU/mL (706.56–3108.99) 30 days after the second dose, both higher than the GMC in the low-dose repeat group (885.74 IU/mL [406.25–1931.17] and 1187.10 IU/ mL [610.01–2310.13]). Conclusions: BARS13 had a generally good safety and tolerability profile, and no significant difference in terms of adverse reaction severity or frequency was observed between different dose groups. The immune response in repeat-dose recipients shows more potential in further study and has guiding significance for the dose selection of subsequent studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.