Knowledge regarding the response of soil invertebrate communities to typhoon disturbance is limited, although it is known that soil invertebrates are sensitive to forest disturbances and that tropical cyclones (typhoons/hurricanes) are the most destructive natural disasters affecting the structure and function of forest ecosystems. To fill this knowledge gap, soil invertebrates in both litter and topsoil layers were investigated in four representative subtropical coastal forests of eastern China one week before the first typhoon (Hinnamnor) (T1), one day after the first typhoon (Hinnamnor) (T2), one day after the second typhoon (Muifa) (T3), and one week after the second typhoon (Muifa) (T4) in September 2022. Typhoon disturbances decreased the density and taxa abundance of soil invertebrate communities in litter layer, but the first typhoon disturbance increased these values in the topsoil layer. One week after the second typhoon disturbance, soil invertebrate communities in the litter layer showed a gradual recovery trend. Meanwhile, the soil invertebrate communities in the litter layer were more sensitive to typhoon disturbances than those in the topsoil layer. Furthermore, the responses of the soil invertebrate communities to the typhoon disturbances varied greatly with the forest types. The invertebrate densities in the litter layer decreased by 62.1%, 63.53%, 47.01%, and 46.92% in Chinese fir, second broad-leaved, mixed, and bamboo forests, respectively. Particularly, these two non-catastrophic typhoons significantly altered the functional group composition of detrital food webs in the short term, and the proportion of phytophages in detrital food webs in the litter layer increased after the typhoon disturbances. In conclusion, the effects of typhoon disturbances on soil invertebrate communities vary greatly with forest type and soil layer, and soil invertebrate communities can gradually recover after typhoon disturbances. The legacy effects of typhoon disturbances on the functional group composition of detrital food webs may influence carbon and nutrient cycling in forest ecosystems.