Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Scramjet engines are one of the most economical and reliable high-speed airbreathing propulsion technologies that can be used for low-cost satellite launchers and hypersonic atmospheric transportation. For access to space, the flight envelope practically comprises varying freestream conditions and altitude during ascent flight, constituting a complex optimization problem subject to various constraints from design and operation perspectives. This paper presents the results and insights obtained from a multi-objective optimization study of three classes of axisymmetric scramjet intakes, i.e., three-ramp, Busemann-based, and generic intakes represented by smooth Bézier curves, with the same intake mass flow rate for all classes. Optimization is conducted by means of surrogate-assisted evolutionary algorithms coupled with computational fluid dynamics simulations using a Reynolds-averaged Navier–Stokes flow solver for steady-state flowfields. It aims to minimize the intake drag and maximize the compression efficiency at Mach 7.7 at an altitude of 30 km simultaneously. It has been found that generic intakes, which offer greater local shape control, can achieve the highest compression efficiency of 94.8%, the highest total pressure recovery, and the highest flow uniformity at the intake exit. The Busemann-based intakes, on the other hand, can produce the highest static pressure ratio while incurring the lowest drag force. The utility of principal component analysis has effectively reduced the dimensions of the solutions, and has identified clusters of non-dominated solutions according to their characteristics such as geometric attributes, exit flow profiles, and wall property distributions, thereby conducing to obtain further physical insights into the optimal configurations.
Scramjet engines are one of the most economical and reliable high-speed airbreathing propulsion technologies that can be used for low-cost satellite launchers and hypersonic atmospheric transportation. For access to space, the flight envelope practically comprises varying freestream conditions and altitude during ascent flight, constituting a complex optimization problem subject to various constraints from design and operation perspectives. This paper presents the results and insights obtained from a multi-objective optimization study of three classes of axisymmetric scramjet intakes, i.e., three-ramp, Busemann-based, and generic intakes represented by smooth Bézier curves, with the same intake mass flow rate for all classes. Optimization is conducted by means of surrogate-assisted evolutionary algorithms coupled with computational fluid dynamics simulations using a Reynolds-averaged Navier–Stokes flow solver for steady-state flowfields. It aims to minimize the intake drag and maximize the compression efficiency at Mach 7.7 at an altitude of 30 km simultaneously. It has been found that generic intakes, which offer greater local shape control, can achieve the highest compression efficiency of 94.8%, the highest total pressure recovery, and the highest flow uniformity at the intake exit. The Busemann-based intakes, on the other hand, can produce the highest static pressure ratio while incurring the lowest drag force. The utility of principal component analysis has effectively reduced the dimensions of the solutions, and has identified clusters of non-dominated solutions according to their characteristics such as geometric attributes, exit flow profiles, and wall property distributions, thereby conducing to obtain further physical insights into the optimal configurations.
The generic inlet is depicted based on a smooth Bézier curve, and the results and insights from high-dimensional dynamic multi-objective optimization of small-sample high Mach number axisymmetric scramjet inlets are discussed in detail. The optimization is performed by integrating a Kriging surrogate model-assisted improved congestion distance multi-objective particle swarm optimization algorithm and computational fluid dynamics simulation. The steady-state flow field is derived by solving the Euler equation using self-developed hypersonic internal and external flow coupling numerical simulation software, which is designed to minimize inlet surface area and drag while improving the total pressure recovery factor. The results revealed that the generic inlet can achieve a total pressure recovery capability exceeding 95%, with minimal surface area and drag. The prediction error, mean absolute percentage error, of the performance dynamic surrogate model based on Kriging is less than 1%, and the performance parameter optimization shows an improvement greater than 8% compared to static multi-objective optimization results. Ultimately, the obtained Pareto solution set is grouped by K-means feature recognition, contributing to a comprehensive understanding of the flow physics knowledge related to optimal geometric local shape control. Finally, an inward-turning inlet is designed by streamline tracking technology based on the optimized axisymmetric scramjet inlet primary flow field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.