Given the shortage of cadaveric organs, we began a study utilizing NHBD for OLTx and KTx. There were 24 NHBD between January 1989 and September 1993. These donors were divided into 2 groups: uncontrolled NHBD (G1) (n=14) were patients whose organs were recovered following a period of CPR; and controlled NHBD (G2) (n=10) were patients whose organs were procured after sustaining cardiopulmonary arrest (CA) following extubation in an operating room setting. Eight kidneys and 5 livers were discarded because of macroscopic or biopsy findings. In G1, 22/27 (81.5%) kidneys were transplanted; 14/22 (64%) developed ATN; 20/22 (95%) recipients were off dialysis at the time of discharge. With a mean follow-up of 32.7± 21.1 months, sixteen (73%) kidneys are still functioning, with a mean serum creatinine of 1.7±0.6 mg/dl. The one-year actuarial patient and graft survivals are 95% and 86%. In G2, 17/20 (85%) kidneys were transplanted; 13/17 (76%) kidneys experienced ATN. All patients were off dialysis by the time of discharge. With a mean follow-up of 17.6±15.4 months, twelve (70%) kidneys are still functioning, with a mean serum creatinine of 2.5±2.1 mg/dl. The one-year actuarial patient and graft survivals are 94% and 82%, respectively. In G1, 6/10 (60%) livers were transplanted; 3/6 (50%) livers functioned, the other 3 patients required ReOLTx in the first week postoperatively because of PNF(n=2) and inadequate portal flow (n=1). Two functioning livers were lost due to HAT (n=1) and CMV hepatitis (n=1). In G2, 6/7 (85.7%) livers were transplanted. All the livers (100%) functioned. 2 patients required ReOLTx for HAT at 0.9 and 1.0 months. Both patients eventually died. One patient with a functioning liver died 2 months post OLTx. The remaining 3 patients are alive and well at 27 months of follow-up. This study shows that the procurement of kidneys from both uncontrolled and controlled NHBD leads to acceptable graft function despite a high incidence of ATN. The function of liver allografts is adequate in the controlled NHBD but suboptimal in the uncontrolled NHBD, with a high rate of PNF.The concept of utilizing organ allografts from non-heart-beating donors (NHBD) * for transplantation is not new. During the 1950s and 1960s, when clinical transplantation was in its infancy, living relatives (1) and NHBD (2) were the main source of human kidney allografts, and for unpaired organs-i.e., hearts and livers; NHBD were the only source of allografts (3-5).Although the concept of brain death was first described in 1956 (6) it was not until 1968 that the guidelines for defining brain death were established and published (7). From that time until the present, brain dead HBD have been the most common source of organs for transplantation.Refinements of surgical techniques, improvements in immunosuppression, development of effective organ preservation, and broader indications have led to increasingly successful results after transplantation. However, this success has exacerbated the shortage of donor organs, and this has result...