“…According to the analysis of GO, KEGG and individual gene function, we subsequently put our interest in exercise-related genes of Abaga horse. Twenty-one genes may involve in exercise of Abaga horse while their functions embodied vasoconstriction ( HTR2B ) (Launay et al 2002; Bevilacqua et al 2010; Meira et al 2014), angiogenesis ( CDH5 ) (Sauteur et al 2014), cardiac contraction ( KCNQ1 ) (Jespersen et al 2005; Brown et al 2015; Pedersen et al 2017), cardiac development and muscle structure ( ENAH ) (Franzini-Armstrong 1973; Benz et al 2013), muscle growth ( PIH1D1, SMURF1 ) (Inoue et al 2010; Ponsuksili et al 2014; Dalbo et al 2013), myogenic differentiation ( UNC13C ) (Meyer et al 2015; Langlois and Cowan 2017), skeletal muscle function ( ATP1A3 ) (Aughey et al 2007; Brashear et al 2007), femur strength and bone mineral density ( PPP2R5B, PPP6R3 ) (Alam et al 2009; Medina-Gomez et al 2017), osteoclast growth ( PTPRE, RHOBTB1 ) (Chiusaroli et al 2004; Song et al 2014), chondrogenesis (SCFD) (DeLise et al 2000; Hou et al 2017), lipid and carbohydrate metabolism ( PPARD, GCG, TCF7L2, GALNT13 ) (Yi et al 2005; Bevilacqua et al 2010; Park et al 2012; Ahmetov and Fedotovskaya 2015; Giordano Attianese and Desvergne 2015; Ropka-Molik et al 2017), exercise stress-induced response ( CD69, EIF4G3 ) (Testi et al 1989; Gradi et al 1998; Cappelli et al 2007; Morabito et al 2016), exercise coordination ( GRM1 ) (Conquet et al 1994; Bossi et al 2017) and height ( VGLL4 ) (Gabriel et al 2016). These genes of positive selection were presented simultaneously in Abaga horse, which may be a reason that it runs rapider than Wushen horse.…”