Weed management options for adzuki-bean growers in Ontario, Canada are limited due to few herbicide registrations. Four field trials were conducted at three locations in south-western Ontario in 2007 and 2008 to determine the tolerance of adzuki bean to several preplantincorporated (PPI), pre-emergence (PRE), and post-emergence (POST) herbicides. All the herbicides were applied at the doses registered for use in soybean. The application of pendimethalin, cloransulam-methyl, and halosulfuron-methyl (PPI), flumetsulam, cloransulammethyl, and halosulfuron-methyl (PRE), and acifluorfen and fomesafen (POST) caused Յ15% crop injury; however, the injury was transient and did not reduce the adzuki bean yield. The POST application of cloransulam-methyl and imazethapyr caused Յ23% crop injury and reduced the biomass by Յ50%, but did not reduce the plant height or crop yield. Metribuzin, flumetsulam, atrazine, and pyroxasulfone (PPI), metribuzin, linuron, pyroxasulfone, and atrazine (PRE), and bentazon, imazethapyr plus bentazon, halosulfuron-methyl, and thifensulfuronmethyl (POST) caused Յ61% crop injury.These treatments reduced the biomass, plant height, and crop yield. Based on these results, pendimethalin, cloransulam-methyl, and halosulfuronmethyl applied PPI, flumetsulam, cloransulam-methyl, and halosulfuron-methyl applied PRE, and acifluorfen and fomesafen applied POST might be potential weed management options for weed management in adzuki bean. Cloransulam-methyl and imazethapyr applied POST will need further evaluation due to phytotoxicity concerns. Metribuzin, flumetsulam, atrazine, and pyroxasulfone applied PPI, metribuzin, linuron, atrazine, and pyroxasulfone applied PRE, and bentazon, imazethapyr plus bentazon, halosulfuron-methyl, and thifensulfuron-methyl applied POST did not have an adequate margin of safety.