Scope of the review
This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold-containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner. The type II (D2) deiodinase catalyzes T4-to-T3 conversion as opposed to the type III (D3) deiodinase that terminates thyroid hormone action.
Major conclusions
D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic-and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis.
General significance
Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.