2019
DOI: 10.1088/1742-6596/1192/1/012023
|View full text |Cite
|
Sign up to set email alerts
|

Restaurant Recommender System Using User-Based Collaborative Filtering Approach: A Case Study at Bandung Raya Region

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
21
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 38 publications
(26 citation statements)
references
References 3 publications
1
21
0
4
Order By: Relevance
“…Beberapa dari seluruh hidangan yang ada dan barangkali disukai pelanggan dapat dipilih sekaligus direkomendasikan secara otomatis dengan memanfaatkan sistem rekomendasi [3]. Sistem rekomendasi dapat diartikan sebagai sebuah sistem yang menganalisis data produk dan pengguna untuk menemukan hubungan di antara keduanya dan kemudian hubungan tersebut ditampilkan dalam bentuk rekomendasi [4].…”
Section: Pendahuluanunclassified
See 2 more Smart Citations
“…Beberapa dari seluruh hidangan yang ada dan barangkali disukai pelanggan dapat dipilih sekaligus direkomendasikan secara otomatis dengan memanfaatkan sistem rekomendasi [3]. Sistem rekomendasi dapat diartikan sebagai sebuah sistem yang menganalisis data produk dan pengguna untuk menemukan hubungan di antara keduanya dan kemudian hubungan tersebut ditampilkan dalam bentuk rekomendasi [4].…”
Section: Pendahuluanunclassified
“…Penerapan k-nearest neighbor [5], [11] untuk mengurangi terjadinya error dalam prediksi. Penggunaan atribut pengguna seperti usia dan gender menghasilkan akurasi sistem rekomendasi yang lebih rendah dibandingkan dengan yang tidak menggunakannya [3].…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Consumers, on the other hand, frequently find it time-consuming and difficult to extract meaningful information from the vast amount of online information available, making selecting a restaurant even more challenging. Giv-Volume 13, Number 4, 2022 en how people's lifestyles are changing as a result of their use of technology, an intelligent recommender system that recommends restaurants can be a good solution for consumers to assist them in finding a restaurant that fits their needs and preferences [1][2][3][4][5][6][7].…”
Section: Introductionmentioning
confidence: 99%
“…Among these recommendation approaches, collaborative filtering is generally considered as one of the most used and most successful recommendation technologies in the recommendation system, especially e-commerce websites such as Amazon.com, Netflix and Google News [7]. In addition, collaborative filtering has also been applied to restaurant recommender system, which is useful for providing recommendations to users who will choose or buy a specific culinary menu based on the ratings given by other users [9]…”
Section: Introductionmentioning
confidence: 99%