The drift of early development stages is an essential element of dispersal in many fish species. It is caused by a multitude of factors and is thus highly specific for each taxon and developmental stage. In this paper, we examined the drift of free embryos, larvae, and juveniles of percids and gobiids in a freeflowing stretch of the Austrian Danube. We assessed the drift density (DD) at different distances from the shore, described seasonal and diel patterns, and how size of drifting fish changed throughout the season. The seasonal patterns as well as the DDs were highly specific for each genus, while the diel patterns and changes in size of drifting fishes differed primarily at family level. In addition, we compared two opposed shorelines-a near-natural gravel bar and a rip-rap stabilized shore. The shores differed significantly and on both shores the DD of gobies was higher compared to percids. Among the Gobiidae, the invasive Neogobius species clearly dominated (99% of total gobiid catch) over the native tubenose goby Proterorhinus semilunaris. Percid DD was substantially higher on the near-natural shore, with Zingel and Sander as the most abundant genera.