In conservation biology, there is a general consensus that protected areas (PAs) are one of the most effective tools for biodiversity protection. Worldwide, the area of PAs is continually increasing. But is the effectiveness of biodiversity protection improving with it? Since many PAs only exist as "paper parks" (i.e. they exist on maps and in legislation but offer little actual protection), the answer is uncertain. Moreover, it has long been known that, not only an increase in the extent of PAs, but also the efficiency of their management is fundamentally important for effective nature conservation. Therefore, there is a wide-ranging discussion about the actual effectiveness of PAs and factors that influence it.In the course of the EU pre-accession phase, a comprehensive field mapping of natural habitats took place in the Czech Republic in years 2001−2004. The mapping results were used to designate Special Areas of Conservation (SACs) as part of the Natura 2000 network.In this study, the aim was to evaluate the effectiveness of this newly created system of SACs for protection of biodiversity represented by the mapped natural habitats. The NCEI index (Nature Conservation Effectiveness Index) was applied, calculated as the total area of a particular habitat type in all SACs RESEARCH ARTICLE Launched to accelerate biodiversity conservation A peer-reviewed open-access journalVilém Pechanec et al. / Nature Conservation 24: 21-41 (2018) 22 in the Czech Republic divided by the total area of that same natural habitat in the entire Czech Republic. Habitat protection in the Czech Republic is focused primarily on the smallest types of rare habitats, many of which are classified as critically endangered. The Czech national system of SACs provides protection to a total of 4,491.68 km 2 of natural habitats. Based on these results, it can be concluded that the overall effectiveness of the SAC system in the Czech Republic, which is specifically aimed at protecting natural habitats, is low (NCEI = 0.36). Nevertheless, the critically endangered habitats receive maximum protection (NCEI = 1).
Abstract:The regional effects of climate change on forest ecosystems in the temperate climate zone of Europe can be modelled as shifts of forest vegetation zones in the landscape, northward and to higher elevations. This study applies a biogeographical model of climate conditions in the forest vegetation zones of the Central European landscape, in order to predict the impact of future climate change on the most widespread tree species in European deciduous forests-the European beech (Fagus sylvatica L.). The biogeographical model is supported by a suite of software applications in the GIS environment. The model outputs are defined as a set of conditions -climate scenario A1B by the Special Report on Emission Scenarios (SRES) for a forecast period, for a specified geographical area and with ecological conditions appropriate for the European beech, which provide regional scenarios for predicted future climatic conditions in the context of the European beech's environmental requirements. These predicted changes can be graphically visualized. The results of the model scenarios for regional climate change show that in the Czech Republic from 2070 onwards, optimal growing conditions for the European beech will only exist in some parts of those areas where it currently occurs naturally. Based on these results, it is highly recommended that the national strategy for sustainable forest management in the Czech Republic be partly re-evaluated. Thus, the presented biogeographical model of climate conditions in forest vegetation zones can be applied, not only to generate regional scenarios of climate change in the landscape, but also as a support tool for the development of a sustainable forest management strategy.
The results of an analysis of land use development in the Morava River floodplain (Czech Republic)
The paper characterizes the natural conditions and current state of floodplain forests in the area of Litovelské Pomoraví and proposes the protective management of the area in accordance with the European Natura 2000 system. The paper describes the geographical location and the natural conditions of the area of interest (climate, geology, geomorphology, hydrology and flood regime, soils, and vegetation). Six groups of geobiocene types were identified, classified and described in detail. Assessment of the ecological stability of the forest stand was carried out using biogeographical differentiation of the landscape and the outline of the forest ecosystem management is drawn based on the differentiation of the protected landscape area into zones with various levels of protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.