BackgroundSeed germination is one of the earliest key events in the plant life cycle. The timing of transition from seed to seedling is an important developmental stage determining the survival of individuals that influences the status of populations and species. Because of wide geographical distribution and occurrence in diverse habitats, wild pea (Pisum sativum subsp. elatius) offers an excellent model to study physical type of seed dormancy in an ecological context. This study addresses the gap in knowledge of association between the seed dormancy, seed properties and environmental factors, experimentally testing oscillating temperature as dormancy release clue.MethodsSeeds of 97 pea accessions were subjected to two germination treatments (oscillating temperatures of 25/15 °C and 35/15 °C) over 28 days. Germination pattern was described using B-spline coefficients that aggregate both final germination and germination speed. Relationships between germination pattern and environmental conditions at the site of origin (soil and bioclimatic variables extracted from WorldClim 2.0 and SoilGrids databases) were studied using principal component analysis, redundancy analysis and ecological niche modelling. Seeds were analyzed for the seed coat thickness, seed morphology, weight and content of proanthocyanidins (PA).ResultsSeed total germination ranged from 0% to 100%. Cluster analysis of germination patterns of seeds under two temperature treatments differentiated the accessions into three groups: (1) non-dormant (28 accessions, mean germination of 92%), (2) dormant at both treatments (29 acc., 15%) and (3) responsive to increasing temperature range (41 acc., with germination change from 15 to 80%). Seed coat thickness differed between groups with dormant and responsive accessions having thicker testa (median 138 and 140 µm) than non-dormant ones (median 84 mm). The total PA content showed to be higher in the seed coat of dormant (mean 2.18 mg g−1) than those of non-dormant (mean 1.77 mg g−1) and responsive accessions (mean 1.87 mg g−1). Each soil and bioclimatic variable and also germination responsivity (representing synthetic variable characterizing germination pattern of seeds) was spatially clustered. However, only one environmental variable (BIO7, i.e., annual temperature range) was significantly related to germination responsivity. Non-dormant and responsive accessions covered almost whole range of BIO7 while dormant accessions are found in the environment with higher annual temperature, smaller temperature variation, seasonality and milder winter. Ecological niche modelling showed a more localized potential distribution of dormant group. Seed dormancy in the wild pea might be part of a bet-hedging mechanism for areas of the Mediterranean basin with more unpredictable water availability in an otherwise seasonal environment. This study provides the framework for analysis of environmental aspects of physical seed dormancy.
Knowledge of current genetic diversity and mating systems of crop wild relatives (CWR) in the Fertile Crescent is important in crop genetic improvement, because western agriculture began in the area after the cold-dry period known as Younger Dryas about 12,000 years ago and these species are also wild genepools of the world’s most important food crops. Wild pea (Pisum sativum subsp. elatius) is an important source of genetic diversity for further pea crop improvement harbouring traits useful in climate change context. The genetic structure was assessed on 187 individuals of Pisum sativum subsp. elatius from fourteen populations collected in the northern part of the Fertile Crescent using 18,397 genome wide single nucleotide polymorphism DARTseq markers. AMOVA showed that 63% of the allelic variation was distributed between populations and 19% between individuals within populations. Four populations were found to contain admixed individuals. The observed heterozygosity ranged between 0.99 to 6.26% with estimated self-pollination rate between 47 to 90%. Genetic distances of wild pea populations were correlated with geographic but not environmental (climatic) distances and support a mixed mating system with predominant self-pollination. Niche modelling with future climatic projections showed a local decline in habitats suitable for wild pea, making a strong case for further collection and ex situ conservation.
In conservation biology, there is a general consensus that protected areas (PAs) are one of the most effective tools for biodiversity protection. Worldwide, the area of PAs is continually increasing. But is the effectiveness of biodiversity protection improving with it? Since many PAs only exist as "paper parks" (i.e. they exist on maps and in legislation but offer little actual protection), the answer is uncertain. Moreover, it has long been known that, not only an increase in the extent of PAs, but also the efficiency of their management is fundamentally important for effective nature conservation. Therefore, there is a wide-ranging discussion about the actual effectiveness of PAs and factors that influence it.In the course of the EU pre-accession phase, a comprehensive field mapping of natural habitats took place in the Czech Republic in years 2001−2004. The mapping results were used to designate Special Areas of Conservation (SACs) as part of the Natura 2000 network.In this study, the aim was to evaluate the effectiveness of this newly created system of SACs for protection of biodiversity represented by the mapped natural habitats. The NCEI index (Nature Conservation Effectiveness Index) was applied, calculated as the total area of a particular habitat type in all SACs RESEARCH ARTICLE Launched to accelerate biodiversity conservation A peer-reviewed open-access journalVilém Pechanec et al. / Nature Conservation 24: 21-41 (2018) 22 in the Czech Republic divided by the total area of that same natural habitat in the entire Czech Republic. Habitat protection in the Czech Republic is focused primarily on the smallest types of rare habitats, many of which are classified as critically endangered. The Czech national system of SACs provides protection to a total of 4,491.68 km 2 of natural habitats. Based on these results, it can be concluded that the overall effectiveness of the SAC system in the Czech Republic, which is specifically aimed at protecting natural habitats, is low (NCEI = 0.36). Nevertheless, the critically endangered habitats receive maximum protection (NCEI = 1).
Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4–100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.
The results of an analysis of land use development in the Morava River floodplain (Czech Republic)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.