1992
DOI: 10.1002/malq.19920380143
|View full text |Cite
|
Sign up to set email alerts
|

Restriction Respectueuse Et Reconstruction Des Chaines Et Des Relations Infinites

Abstract: We show a faithful restriction theorem among infinite chains which implies a reconstructibility conjecture of Halin. This incite us to study the reconstructibility in the sense of FraissC and to prove it for orders of cardinality infinite or 2 3 and for multirelations of cardinality infinite or 2 7, what improves the theory obtained by G. Lopez in the finite case. For this work we had to study the infinite classes of difference which have to be a linear order of type w , w* or W * + w ; this complete the theor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
2

Year Published

2005
2005
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 12 publications
0
3
0
2
Order By: Relevance
“…Theorem 6 [7] Two f inite orders P and P on the same set V are isomorphic provided that for every subset X of V such that |X| ∈ {2, 3}, the suborders P(X) and P (X) are isomorphic.…”
Section: Corollarymentioning
confidence: 99%
“…Theorem 6 [7] Two f inite orders P and P on the same set V are isomorphic provided that for every subset X of V such that |X| ∈ {2, 3}, the suborders P(X) and P (X) are isomorphic.…”
Section: Corollarymentioning
confidence: 99%
“…This work was extended to the infinite case by J.G. Hagendorf in [4]. These works make essential use of difference classes introduced by Lopez [2,3].…”
Section: Introductionmentioning
confidence: 99%
“…For the (≤ 3)-reconstruction, Boudabbous and Lopez [8] characterized the finite binary relations that are (≤ 3)-reconstructible. Hagendorf [4] proved that every finite poset with at least 4 vertices is (≤ 3)-reconstructible. In [9] Boudabbous and Delhommé suggested the question about the characterization of the (≤ 3)-reconstruction of posets and bichains.…”
Section: Introductionmentioning
confidence: 99%
“…la plus grande), apparaîtrait ω+1 dans la classe, ce qui est interdit. Le cas où la composante est la dernière se traite directement avec facilité.La réciproque est immédiate grâceà la technique de la guirlande ([20] p482-483 ): on appelle guirlande la donnée de R et du graphe de différence S de deux relations R et R' qui sont (≤3,ω,ω*,Ω,Ω*)-hypomorphes de type ω, ω* ou ω*+ω, dont la base n'est formée que d'une seule (R,R')-classe de différence. Une classe de (≤3,ω,ω*,Ω,Ω*)-hypomorphie peuvent effectivementêtre de type ω ou ω* ou ω*+ω.…”
unclassified
“…Une classe de (≤3,ω,ω*,Ω,Ω*)-hypomorphie peuvent effectivementêtre de type ω ou ω* ou ω*+ω. L'exemple extrait de[20] (p482-483),…”
unclassified